Syntheses, analytical and pharmacological characterizations of the ‘legal high’ 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo) and analogues

Tristan Colestock1 | Jason Wallach1 | Matt Mansi1 | Nadine Filemban1 | Hamilton Morris2 | Simon P. Elliott3 | Folker Westphal4 | Simon D. Brandt5 | Adeboye Adejare1

1 Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
2 Department of Anthropology, New School for Social Research, New York, New York, USA
3 Alere Forensics (Forensics Ltd), Malvern Hills Science Park, Malvern, UK
4 State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Kiel, Germany
5 School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK

Correspondence
Adeboye Adejare, Department of Pharmaceutical Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, Pennsylvania 19104.
Email: a.adejar@usciences.edu

New psychoactive substances (NPS) are commonly referred to as ‘research chemicals’, ‘designer drugs’ or ‘legal highs’. One NPS class is represented by dissociative anesthetics, which include analogues of the arylcyclohexylamine phencyclidine (PCP), ketamine and diphenidine. A recent addition to the NPS market was 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo), a morpholine analogue of 3-MeO-PCP. Although suspected to have dissociative effects in users, information about its pharmacological profile is not available. From clinical and forensic perspectives, detailed analytical data are needed for identification, especially when facing the presence of positional isomers, as these are frequently unavailable commercially. This study presents the analytical and pharmacological characterization of 3-MeO-PCMo along with five additional analogues, namely the 2- and 4-MeO-PCMo isomers, 3,4-methylenedioxy-PCMo (3,4-MD-PCMo), 3-Me-PCMo and PCMo. All six arylcyclohexylmorpholines were synthesized and characterized using chromatographic, mass spectrometric and spectroscopic techniques. The three positional isomers could be differentiated and the identity of 3-MeO-PCMo obtained from an internet vendor was verified. All six compounds were also evaluated for affinity at 46 central nervous system receptors including the N-methyl-D-aspartate receptor (NMDAR), an important target for dissociative anesthetics such as PCP and ketamine. In vitro binding studies using (+)-[3H]-MK-801 in rat forebrain preparations revealed moderate affinity for NMDAR in the rank order of 3-Me > 3-MeO > PCMo > 3,4-MD > 2-MeO > 4-MeO-PCMo. 3-Me-PCMo was found to have moderate affinity for NMDAR comparable to that of ketamine, and had an approximate 12-fold lower affinity than PCP. These results support the anecdotal reports of dissociative effects from 3-MeO-PCMo in humans.

KEYWORDS
arylcyclohexylmorpholines, dissociative anesthetics, new psychoactive substances, NMDA receptor, PCP

1 INTRODUCTION

A high number of new psychoactive substances (NPS)1 continue to be available from online vendors and are sold as ‘research chemicals’. These chemicals are largely designed to bypass governmental restrictions on existing psychoactive drugs. Dissociative agents that target the N-methyl-D-aspartate receptor (NMDAR) represent one of many available classes of compounds that are encompassed by the NPS term. Substances with dissociative profile (Figure 1A) comprise structural analogues of the arylcyclohexylamines such as phencyclidine (PCP), ketamine and methoxetamine.2 More recently, 1,2-dialkylethanes such as diphenidine and its 2-methoxy analogue 2-MXP have also appeared.3,4 Substances that target the NMDAR are of interest for the development of treatment options for conditions such as depression, neuropathic pain and a variety of neurodegenerative disorders and
dementias. At the same time, a number of these substances are used recreationally, outside of a medical setting, and include compounds that have not undergone any substantial pharmacological and toxicological evaluations. A systematic methodology is needed in order to address the chemical, pharmacodynamic and pharmacokinetic properties of these substances, thus facilitating drug development efforts, and identification of toxicity profiles as well as adverse events associated with recreational drug use.

The earliest reported synthesis of 4-[1-phenylcyclohexyl]morpholine (PCMo) was found in a patent submitted in 1954 and predates that of PCP. However, its pharmacology, or dissociative profile, was not recognized at that time. PCMo made brief documented appearances as an 'analogue' of PCP in the recreational market during the 1970's and again in the early 2000's. More recently, 4-[1-[3-methoxyphenyl]cyclohexyl]morpholine (3-MeO-PCMo) has become available for purchase as a research chemical on a number of websites, which encouraged the authors to explore its chemistry and pharmacology. To gain further insight into this class of compounds, 2-MeO- and 4-MeO positional isomers were synthesized, as well as 3,4-methylenedioxy-PCMo (3,4-MD-PCMo), 3-Me-PCMo and the unsubstituted PCMo template (Figure 1B). The entire series was subjected to comprehensive analytical characterization including chromatographic, mass spectrometric and spectroscopic methods. In addition, a test purchase of 3-MeO-PCMo was compared to the synthesized reference material confirming its identity.

With the exception of 2-MeO-PCMo and PCMo, pharmacological data on the arylcyclohexylmorpholines investigated in the present study are not available. 2-MeO-PCMo was shown to reduce acute thermal (tail immersion test) and chronic chemical pain (formaldehyde) induced in adult female rats. In the tail immersion test, analgesic effects were found to be more pronounced compared to PCP and PCMo. PCMo was also demonstrated to display lower potencies compared to PCP in a range of in vitro and in vivo assays targeting a number of different receptors. In order to explore whether the six arylcyclohexylmorpholines showed PCP or ketamine-like properties in vitro, all test drugs were pharmacologically characterized in the present study for binding affinity at 46 central nervous system (CNS) receptors including NMDAR, and monoamine transporters for dopamine, norepinephrine and serotonin.

2 | EXPERIMENTAL

2.1 | Materials

All starting materials, reagents and solvents used for syntheses were obtained from Sigma Aldrich (St Louis, MO, USA). Flash column chromatography was performed using Merck silica gel grade 9385 (230–400 mesh, 60 Å). Melting points were obtained using a DigiMelt A160 SRS digital melting point apparatus (Stanford Research Systems, Sunnyvale, CA, USA) at a ramp rate of 2°C/min. Melting point determinations, spectral analyses and receptor binding studies were performed on target compounds following flash chromatography purification.

2.2 | Instrumentation

2.2.1 | Nuclear magnetic resonance (NMR) spectroscopy

1H NMR (400 MHz) and 13C NMR (101 MHz) spectra were obtained from the freebase material in CDCl3 solution (100% and 99.96% D, 0.03% (v/v) TMS) at a concentration of 20 mg/mL using a Bruker Ultrashield 400 Plus spectrometer with a 5 mm BBO S1 (Z gradient plus) probe at 24°C. Internal chemical shift references were TMS (δ = 0.00 ppm) and CDCl3 (δ = 77.0 ppm). Spectra were recorded with the freebases and the test purchase of 3-MeO-PCMo was determined to be the freebase. NMR assignments were made as described previously using chemical shift position, splitting, 13C PENDANT and 2-D experiments (HMQC, HMBC and COSY).

2.2.2 | Gas chromatography (EI/CI) ion trap mass spectrometry (GC-IT-MS)

Data for all six PCMo analogues (0.5 mg/mL in methanol) were recorded under full scan electron ionization (EI) and chemical ionization (CI) conditions using HPLC-grade methanol as the liquid CI reagent. A Varian 450-GC gas chromatograph coupled to a Varian 220-MS ion trap mass spectrometer (scan range m/z 41–m/z 500) and a Varian 8400 autosampler was employed with a Varian CP-1177 injector (275°C) in split mode (1:50) (Walnut Creek, CA, USA). The Varian MS Data Review function of Workstation software, version 6.91, was used for data acquisition. Transfer line, manifold and ion trap
temperatures were set at 310, 80 and 220°C, respectively. The carrier gas was helium at a flow rate of 1 mL/min using the EFC constant flow mode. The default settings for CI ionization parameters (0.4 s/scan) were used: CI storage level m/z 19.0; ejection amplitude m/z 15.0; background mass m/z 55; maximum ionization time 2000 μs; maximum reaction time 40 ms; target TIC 5000 counts. An Agilent J&W VF-5 ms GC column (30 m × 0.25 mm, 0.25 μm) was employed for separation. The starting temperature was set at 80°C and held for 1 min. The temperature then increased at 20°C/min to 280°C and held constant for 9.0 min to give a total run time of 20.00 min.

2.2.3 | High mass accuracy mass spectrometry using an atmospheric solids analysis probe (ASAP)

ASAP was employed with a Thermo Fisher Scientific Inc. (Waltham, MA, USA) Orbitrap Exactive using an Ion Max source in positive mode. Measured accurate masses were within ±5 ppm of the theoretical masses. The following parameters were used: resolution was set to ultrahigh, sheath gas (N₂) flow 5 (arbitrary units), auxiliary gas flow 6 (arbitrary units), sweep gas flow 0 (arbitrary units), corona discharge 4 kV, capillary temperature 275°C, capillary voltage 25.0 V, skimmer voltage 14 V and a tube lens voltage of 85 V. Instrument calibrations were performed using the ProteoMass LTQ/FT-Hybrid ESI Positive Mode Calibration Mix from Supelco Analytical (Belleville, PA, USA).

2.2.4 | Ultrahigh-performance liquid chromatography (UHPLC) high mass accuracy electrospray mass spectrometry

Mobile phases used for UHPLC separation consisted of acetonitrile with 1% (v/v) formic acid and an aqueous solution of 1% formic acid. The column temperature was set at 40°C (0.6 mL/min) and data were acquired for 5.5 min. The elution was a 5–70% acetonitrile gradient ramp over 3.5 min, then increased to 95% acetonitrile in 1 min and held for 0.5 min before returning to 5% acetonitrile in 0.5 min. QTOF-MS data were acquired in positive mode scanning from m/z 100 to m/z 1000 with and without auto MS/MS fragmentation. Ionization was achieved with an Agilent JetStream electrospray source and infused internal reference masses. Agilent 6540 QTOF-MS parameters: gas temperature 325°C, drying gas 10 L/min and sheath gas temperature 400°C. Internal reference ions at m/z 121.05087 and m/z 922.00979 were used.

2.2.5 | High-performance liquid chromatography diode array detection (HPLC-DAD)

HPLC-DAD analyses were carried out with a Dionex 3000 Ultimate system coupled to a UV diode array detector (Thermo Fisher, St Albans, UK), using a Phenomenex Synergi Fusion column (150 mm × 2 mm, 4 μm) that was protected by a 4 mm × 3 mm Phenomenex Synergi Fusion guard column (Phenomenex, Macclesfield, UK). The mobile phases were made from 70% acetonitrile with 25 mM triethylammonium phosphate (TEAP) buffer and an aqueous solution of 25 mM TEAP buffer. Elution was achieved with a gradient that started with 4% acetonitrile and ramped to 70% acetonitrile in 15 min and held for 3 min. The total acquisition time was 18 min at a flow rate of 0.6 mL/min. The DAD window was set at 200 to 595 nm (collection rate 2 Hz).

2.2.6 | Infrared spectroscopy

Infrared (IR) spectra were obtained with a PerkinElmer Spectrum BX FTIR model (Llantrisant, UK) using a Pike MIRacle ATR system. Data were acquired with the Spectrum v5.01 software (scan range 400–4000 cm⁻¹, resolution 4 cm⁻¹, 16 scans). Spectral data can be found in the supporting information.

2.2.7 | Microwave synthesizer

Conversions from primary amine intermediate to morpholine-ring products were performed using a CEM Discover SP microwave synthesizer (CEM Corporation, Matthews, NC, USA). Reactions were carried out in 35 mL microwave vessels from CEM. Conditions for the reactions are detailed below.

2.3 | Synthesis procedures

The syntheses of the primary amine intermediates were performed using a modified Geneste route (Figure 2) as described previously. Reactions starting from the primary amine intermediate to yield the morpholine ring products were carried out in a CEM Discover SP microwave synthesizer. The primary amine (PCA) intermediates were available from previous studies.

2.3.1 | Preparation of 4-[1-(2-methoxyphenyl)cyclohexyl] morpholine (2-Me-PCMo)

1-(2-Methoxyphenyl)cyclohexamine (2-Me-PCA) (4.87 mmol, 1.00 g) and triethylamine (14.61 mmol, 2.03 mL) were added to acetonitrile (~ 15 mL). The solution was dried for 10 min with 4 Å molecular sieves and then decanted into a 35 mL microwave vessel. 2-Bromoethyl ether (9.74 mmol, 1.22 mL) was added to the solution, the vessel was sealed under inert argon, and then reacted for 1.5 h at 85°C with 50 W power and stirring. Reaction pressures did not exceed 25 psi. Afterwards, the reaction mixture (a red/dark red color) was transferred to an aqueous 0.2 M HCl solution (60 mL) and washed with ethyl acetate (EtOAc) (3 × 60 mL). The aqueous phase was basified to pH > 12 with KOH pellets and extracted with EtOAc (3 × 60 mL). The pooled organic extraction was washed once with 10 mL of brine, dried with anhydrous magnesium sulfate, and concentrated under reduced pressure to produce a light amber oil. The crude product was collected and purified using flash column chromatography with a mobile phase consisting of hexane/EtOAc (80/20) with triethylamine (1%, v/v). Fractions containing the product were pooled and concentrated to yield light-yellow oil, which solidified.

FIGURE 2 Synthetic scheme used for the preparation of the investigated PCMo series via the modified Geneste route. TFA: trifluoroacetic acid; TEA: triethylamine. R = 2-, 3- and 4-MeO, 3,4-OCH₂O, 3-Me or H.
upon cooling (3.16 mmol, 0.869 g, 64.7% yield). This solid was recrystallized from boiling hexanes. Upon cooling at 0°C, colorless crystals formed and were collected by decanting, washed with hexanes and dried at room temperature (m.p. 67.1–68.6°C). HR-ASAP-MS of the freebase observed: m/z 276.1949 (theory [M + H]⁺ C₁₇H₂₆N₁O₂⁺, m/z 276.1958, Δ = –3.3 ppm).

The HCl salt of 2-MeO-PCMo was prepared by dissolving the solidified freebase in 100% ethanol (EtOH), titrating to pH 1.0 with concentrated HCl and evaporating under a stream of warm air. EtOH (100%) was added in 10 mL increments and evaporated until all residual moisture and HCl were removed. The resulting solid was dried and washed with EtOAc (2 × 5 mL). The dried solid was then recrystallized by dissolving in a minimal amount of warm EtOH and diluted three-fold with Et₂O. The solution was stored at 0°C overnight. The resulting crystals were collected by decanting the solvent, washing the solid with EtOAc (2 × 5 mL) and drying. Recrystallization was repeated two additional times as described to produce white flakey crystals with m.p. 179.5–181.5°C (lit. 167–169°C[13]).

2.3.2 | Preparation of 4-[1-(3-methoxyphenyl)cyclohexyl] morpholine (3-MeO-PCMo)

3-MeO-PCMo was prepared in 50.9% yield from 3-MeO-PCA as described above and formed a colorless crystalline solid (m.p. 74.4–75.3°C). HR-ASAP-MS of the freebase observed: m/z 276.1952 (theory [M + H]⁺ C₁₇H₂₆N₁O₂⁺, m/z 276.1958, Δ = –2.2 ppm). The HCl salt was a white flakey crystalline powder (m.p. 209.1–209.4°C).

2.3.3 | Preparation of 4-[1-(4-methoxyphenyl)cyclohexyl] morpholine (4-MeO-PCMo)

4-MeO-PCMo was prepared in 43% yield from 4-MeO-PCA as described above and formed a colorless crystalline solid (m.p. 79.9–81.5°C). HR-ASAP-MS of the freebase observed: m/z 276.1951 (theory [M + H]⁺ C₁₇H₂₆N₁O₂⁺, m/z 276.1958, Δ = –2.5 ppm). The HCl salt formed translucent amber crystals (m.p. 153.1–156.1°C).

2.3.4 | Preparation of 4-[1-(1,3-benzodioxol-5-yl) cyclohexyl]morpholine (3,4-MD-PCMo)

3,4-MD-PCMo was prepared in 44% yield from 3,4-MD-PCA as described above and formed a colorless crystalline solid (m.p. 123.4–124.9°C). HR-ASAP-MS of the freebase observed: m/z 290.1752 (theory [M + H]⁺ C₁₉H₂₆N₂O₂⁺, found m/z 290.1751, Δ = 0.3 ppm). The HCl salt was a white fluffy crystalline powder (m.p. 180.5–181.7°C).

2.3.5 | Preparation of 4-[1-(3-methylphenyl)cyclohexyl] morpholine (3-Me-PCMo)

3-Me-PCMo was prepared in 46.4% yield from 3-Me-PCA as described above as a colorless oil. The HCl salt was a white fluffy crystalline powder (m.p. 211.2–211.7°C). HR-ASAP-MS of the HCl salt observed: m/z 260.2018 (theory [M + H]⁺ C₁₇H₂₆N₁O₂⁺, m/z 260.2009, Δ = 3.5 ppm).

2.3.6 | Preparation of 4-(1-phenylcyclohexyl)morpholine (PCMo)

PCMo was prepared as described in 60% yield from PCA; however, microwave reaction parameters were slightly altered (80°C, 65 W, and monitored by GC–MS for a total reaction time of 2.5 h). HR-ASAP-MS of the freebase observed: m/z 246.1845 (theory [M + H]⁺ C₁₇H₂₆N₁O₂⁺, m/z 246.1852, Δ = 2.8 ppm). HCl salt was obtained as the hemihydrate (¹H NMR) white powder with a melting point of 197.3–198.5°C (lit. 187–188°C[17]; 188–190°C[23]; 187–188°C[34]; 181–182°C[36]; 199–201°C (hemihydrate)[36] 182°C[15]). An alternative route for the synthesis of PCMo was also employed and is provided in the supporting information.

2.4 | NMDAR binding studies

In vitro binding affinities (Kᵢ) of the target compounds were determined using competitive radioligand binding studies with [+]-[3⁻³H]-MK-801, a high-affinity ligand for the PCP site within the NMDAR channel, in accordance with established protocols.[37,38] Thoroughly washed rat forebrain homogenate was used as the NMDAR source (whole brain obtained from Pel-Freez Biologicals, Rogers, AR, USA) and prepared as described by Reynolds and Sharma.[37] Suspensions of 10 mM HEPES buffer (pH 7.4, 25°C) containing 100 µg/mL protein, 1 nM (+)-[3⁻³H]-MK-801, 100 µM glutamate, 10 µM glycine and various concentrations of unlabeled test drugs were incubated in the dark on a mechanical rocker at 25°C for 2 h. (+)-MK-801 hydrogen maleate (30 µM) was used for nonspecific binding (and positive control). The reaction was terminated by vacuum filtration using a 24-well cell harvester (Brandel, Gaithersburg, MD, USA) over presoaked GF/B glass fiber filters (Brandel, Gaithersburg, MD, USA). Filters were washed with room temperature HEPES buffer (3 × 5 mL). Tritium trapped on the filter was measured via liquid scintillation counting, using a Beckman LS 6500 multipurpose scintillation counter (Beckman Coulter, USA) at 57% efficiency. IC₅₀ values were determined with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA) using nonlinear regression with log-concentration plotted against percent specific binding. Percent specific binding for (+)-[3⁻³H]-MK-801 in a control experiment was ~95%. Kᵢ values were calculated using the equation of Cheng and Prusoff.[39] Kᵢ for (+)-MK-801 hydrogen maleate (1.75 nM) was determined via a homologous binding assay as described by Reynolds and Sharma and was consistent with the literature.[39] Protein concentration was determined via the Bradford method[90] using Coomasie protein assay reagent and rat albumin as standard [Sigma Aldrich, USA]. Experiments were performed in duplicate and repeated three times.

2.5 | Non-NMDAR binding studies

Competitive binding studies of PCMo and analogues at 45 additional CNS receptors were performed through the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP). Briefly, target compounds were dissolved in dimethyl sulfoxide and subjected to primary screening at 10,000 nM concentrations. Compounds exhibiting >50% inhibition underwent secondary assay at varying concentrations to determine Kᵢ values. Additional experimental details are available in the NIMH PDSP assay protocol book.[41]
RESULTS AND DISCUSSION

The six morpholine analogues investigated in this study (Figure 1B) were synthesized using the modified Geneste route as reported previously for the preparation of PCP and PCPy analogues.5,10,32 The conversion from the primary amine (PCA) to the morpholine ring was performed using an S\textsubscript{N}2 cyclization reaction between the substituted PCA material and bis(2-bromoethyl ether) (Figure 2) and gave ~45%
yields following purification by column chromatography and recrystal-
lization. The synthesized PCMo HCl was found to be the hemihy-
drate salt (°H NMR) and was consistent with a literature melting
point value reported for the hemihydrate salt.36 The remaining ana-
logues contained less than a 0.25 molar equivalent of water. A dis-
crepancy with the 2-MeO-PCMo HCl melting point exists herein
with a previously reported value,17 which may be due to polymor-
phism, solvates or purity. The appearance of 3-MeO-PCMo on the
‘research chemicals’ market triggered questions about the ability
to differentiate this compound from its positional 2-MeO-PCMo and
4-MeO-PCMo isomers, given that isomeric sets of compounds are
frequently unavailable as reference material that can be used for
forensic and clinical investigations. With the exception of 2-MeO-
PCMo and PCMo, where some, albeit limited analytical data are
available, the remaining compounds presented in this study are
reported for the first time.

GC-IT-MS data obtained from EI and CI methods recorded for the
HCl salts are summarized in Figure 3. The positional isomers 2-, 3-
and 4-MeO-PCMo could be separated on the GC column (10.04, 10.30 and
10.52 min). Under EI conditions, both the molecular ion and a [M − H+]+
species were visible in appreciable relative abundance and implementa-
tion of CI facilitated detection of the corresponding protonated

FIGURE 4 UHPLC high mass accuracy electrospray tandem mass spectra
molecules. The EI mass spectrum obtained in the present study for PCMo was comparable with a spectrum published 40 years ago33 although differences were observed in the relative abundance of various fragments, possibly due to implementation of different mass analyzers. CI mass spectra of PCMo, using both methane and isobutane as the reagent gas, appeared 3–4 years later42,43 which revealed the formation of fragment ions also detected in the present study, such as m/z 88, m/z 159 and m/z 202. The ions formed under EI and Cl ion trap MS conditions appeared to be equivalent to those reported previously for a range of 1-(1-phenylcyclohexyl)piperidine (PCP) and 1-(1-phenylcyclohexyl)pyrrolidine10 and N-alkylarylcyclohexylamines5 and proposed fragmentation pathways have been described. The implementation of GC–MS analysis also resulted in degradation of the PCMo products that gave rise to a GC-induced degradant consistent with what appeared to be a 1-(1-cyclohexen-1-yl) ring-substituted benzene species which has been described for other PCP-type substances before10 (supporting information). Conversion of the hydrochloride salts to the freebases and analysis by a different instrument (GC quadrupole EI–MS) revealed a significant reduction in degradation (supporting information). The sample advertised as 3-MeO-PCMo by an online vendor was found to be consistent with the information provided on the product label. Implementation of GC-siR also allows for the analysis of compound mixtures and/or substances that may only be available in small amounts, including the GC-induced degradation products (supporting information). As shown in the supporting information, the three positional isomers could be differentiated by ATR-IR (HCl salts) and GC-siR. The purity of the freebase was not determined; however, no impurity peaks were observed with GC–MS, LC–MS or NMR, and the melting point of the test purchase exactly matched that of the synthesized 3-MeO-PCMo when run side by side. Attempts to separate the three positional isomers using various solvent combinations and two different thin layer chromatography plates, however, were unsuccessful.

UHPLC electrospray quadrupole time-of-flight tandem mass spectra for all six PCMo analogues are shown in Figure 4, which illustrated that product ion formations were also comparable to a number of PCP/PCPy10 and N-alkylarylcyclohexylamine analogues.5 Examples observed in Figure 4 include a neutral loss of morpholine, formation of the respective tropylium ion or detection of protonated morpholine. Implementation of the HPLC-DAD procedure showed only partial separation of the three positional isomers due to co-elution of 3-MeO- and 4-MeO-PCMo (Figure 5). However, the UV spectra...
TABLE 1

<table>
<thead>
<tr>
<th>Proton</th>
<th>2-MeO- PCMo</th>
<th>3-MeO- PCMo</th>
<th>4-MeO- PCMo</th>
<th>3,4-MD-PCMo</th>
<th>3-Me-PCMo</th>
<th>PCMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂,₂°</td>
<td>2.64–2.55 m (2H)</td>
<td>2.13–2.03 m (2H)</td>
<td>2.15–2.05 m (2H)</td>
<td>2.08–1.97 m (2H)</td>
<td>2.15–2.04 m (2H)</td>
<td>2.19–2.04 m (2H)</td>
</tr>
<tr>
<td></td>
<td>1.80 dd (J = 13.6, 10.5, 3.0 Hz, 2H)</td>
<td>1.93 dd (J = 13.3, 9.5, 3.3 Hz, 2H)</td>
<td>1.91 dd (J = 13.4, 9.7, 3.3 Hz, 2H)</td>
<td>1.89 dd (J = 13.3, 9.6, 3.3 Hz, 2H)</td>
<td>1.94 dd (J = 13.4, 9.4, 3.3 Hz, 2H)</td>
<td>1.95 dd (J = 13.5, 9.6, 3.4 Hz, 2H)</td>
</tr>
<tr>
<td>H₃,₅</td>
<td>1.74–1.61 m (2H)</td>
<td>1.74–1.64 m (2H)</td>
<td>1.74–1.63 m (2H)</td>
<td>1.74–1.66 m (2H)</td>
<td>1.76–1.64 m (2H)</td>
<td>1.76–1.64 m (2H)</td>
</tr>
<tr>
<td></td>
<td>1.32–1.20 m (2H)</td>
<td>1.35–1.23 m (2H)</td>
<td>1.39–1.25 m (2H)</td>
<td>1.37–1.26 m (2H)</td>
<td>1.39–1.24 m (2H)</td>
<td>1.39–1.24 m (2H)</td>
</tr>
<tr>
<td>H₄</td>
<td>1.51–1.32 m (2H)</td>
<td>1.49–1.39 m (2H)</td>
<td>1.49–1.39 m (2H)</td>
<td>1.48–1.39 m (2H)</td>
<td>1.50–1.39 m (2H)</td>
<td>1.50–1.39 m (2H)</td>
</tr>
<tr>
<td>H₁</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H₂</td>
<td>—</td>
<td>6.85 t (J = 1.9 Hz, 1H)</td>
<td>7.21 dm (J = 8.9 Hz, 1H)</td>
<td>6.79 d (J = 8.3 Hz, 1H)</td>
<td>7.10 s (1H) *overlap with H₆</td>
<td>7.32–7.27 m (1H)</td>
</tr>
<tr>
<td>H₃</td>
<td>6.98–6.88 m (1H)</td>
<td>—</td>
<td>6.88 dm (J = 8.9 Hz, 1H)</td>
<td>—</td>
<td>—</td>
<td>7.38–7.32 m (1H)</td>
</tr>
<tr>
<td>H₄</td>
<td>7.29–7.18 m (1H)</td>
<td>6.79 dd (J = 8.1, 2.5 Hz, 1H)</td>
<td>—</td>
<td>—</td>
<td>7.10–7.06 m (1H) *overlap with H₂</td>
<td>7.27–7.20 m (1H)</td>
</tr>
<tr>
<td>H₅</td>
<td>7.29–6.88 m (1H)</td>
<td>7.27 t (J = 8.0 Hz, 1H)</td>
<td>6.88 dm (J = 8.9 Hz, 1H)</td>
<td>6.82 d (J = 1.8 Hz, 1H)</td>
<td>7.30–7.19 m (1H)</td>
<td>7.38–7.32 m (1H)</td>
</tr>
<tr>
<td>H₆</td>
<td>7.29–7.18 m (1H)</td>
<td>6.89 dd (J = 7.8, 1.8 Hz, 1H)</td>
<td>7.21 dm (J = 8.9 Hz, 1H)</td>
<td>6.75 dd (J = 8.3, 1.8 Hz, 1H)</td>
<td>7.05 dm (J = 7.6 Hz, 1H)</td>
<td>7.32–7.27 m (1H)</td>
</tr>
<tr>
<td>H₇</td>
<td>7.24 t (J = 4.5 Hz, 4H)</td>
<td>2.34 t (J = 4.6 Hz, 4H)</td>
<td>7.32 t (J = 4.5 Hz, 4H)</td>
<td>2.33 t (J = 4.6 Hz, 4H)</td>
<td>2.33 t (J = 4.5 Hz, 4H)</td>
<td>2.33 t (J = 4.5 Hz, 4H)</td>
</tr>
<tr>
<td>H₈</td>
<td>3.63 t (J = 4.6 Hz, 4H)</td>
<td>3.63 t (J = 4.6 Hz, 4H)</td>
<td>3.63 t (J = 4.6 Hz, 4H)</td>
<td>3.63 t (J = 4.7 Hz, 4H)</td>
<td>3.63 t (J = 4.6 Hz, 4H)</td>
<td>3.63 t (J = 4.6 Hz, 4H)</td>
</tr>
<tr>
<td>Cc</td>
<td>3.77 s (OCH₃)</td>
<td>3.82 s (OCH₃)</td>
<td>3.81 s (OCH₃)</td>
<td>5.95 s (OCH₂O)</td>
<td>2.37 s (CH₃)</td>
<td>—</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Carbon</th>
<th>2-MeO-PCMo</th>
<th>3-MeO-PCMo</th>
<th>4-MeO-PCMo</th>
<th>3,4-MD-PCMo</th>
<th>3-Me-PCMo</th>
<th>PCMo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>63.12</td>
<td>60.69</td>
<td>60.35</td>
<td>60.72</td>
<td>60.62</td>
<td>60.71</td>
</tr>
<tr>
<td>C₂,₂°</td>
<td>34.49</td>
<td>33.00</td>
<td>33.00</td>
<td>33.21</td>
<td>32.93</td>
<td>32.86</td>
</tr>
<tr>
<td>C₃,₅</td>
<td>22.93</td>
<td>22.29</td>
<td>22.28</td>
<td>22.29</td>
<td>22.28</td>
<td>22.25</td>
</tr>
<tr>
<td>C₁'</td>
<td>126.91</td>
<td>141.18</td>
<td>131.37</td>
<td>133.70</td>
<td>139.16</td>
<td>139.22</td>
</tr>
<tr>
<td>C₂'</td>
<td>159.75</td>
<td>114.34</td>
<td>128.52</td>
<td>107.23</td>
<td>127.99</td>
<td>127.34</td>
</tr>
<tr>
<td>C₃'</td>
<td>112.43</td>
<td>159.19</td>
<td>112.87</td>
<td>147.41</td>
<td>136.97</td>
<td>127.64</td>
</tr>
<tr>
<td>C₄'</td>
<td>130.52</td>
<td>110.51</td>
<td>157.87</td>
<td>145.72</td>
<td>124.47</td>
<td>126.35</td>
</tr>
<tr>
<td>C₅'</td>
<td>119.97</td>
<td>128.45</td>
<td>112.87</td>
<td>107.97</td>
<td>127.48</td>
<td>127.64</td>
</tr>
<tr>
<td>C₆'</td>
<td>127.92</td>
<td>119.95</td>
<td>128.52</td>
<td>120.66</td>
<td>127.06</td>
<td>127.34</td>
</tr>
<tr>
<td>C₀</td>
<td>46.64</td>
<td>45.91</td>
<td>45.84</td>
<td>45.88</td>
<td>45.88</td>
<td>45.86</td>
</tr>
<tr>
<td>C₉</td>
<td>68.13</td>
<td>67.88</td>
<td>67.84</td>
<td>67.86</td>
<td>67.89</td>
<td>67.87</td>
</tr>
<tr>
<td>C₈</td>
<td>55.16 (OCH₃)</td>
<td>55.17 (OCH₃)</td>
<td>55.14 (OCH₃)</td>
<td>100.82 (OCH₂O)</td>
<td>21.86 (CH₃)</td>
<td>—</td>
</tr>
</tbody>
</table>
scanned between 200 and 594 nm provided distinct differences that allowed for facile differentiation between the isomers. 3-MeO-PCMo gave rise to distinctive peaks at 218 and 278 nm whereas 4-MeO-PCMo displayed a slight shift to 230 nm although the 277 nm peak remained indistinguishable. UV spectra recorded for 3,4-MD-PCMo, 3-Me-PCMo and PCMo and their corresponding HPLC retention times are provided in the supporting information.

Detailed NMR analyses of PCMo have been reported previously and were consistent with the results presented in this study (Tables 1 and 2).44,45 PCMo HCl was also characterized using 13C NMR and the recorded spectrum was in agreement with the literature.36 In general, the chemical shift behavior of the series was consistent with those observed previously with related arylcyclohexylamines and a detailed discussion can be found elsewhere.5,10,30 One notable distinction unique to the PCMo series worth addressing, however, is with respect to the morpholine ring, as this feature may be useful for the identification of related arylcyclohexylmorpholines. Due to the presence of the O heteroatom in the ring system, the β-chemical shifts were more deshielded and, thus, appeared further downfield than those found in the α-position (NCH) in both the 1H NMR (~3.6 ppm vs. ~2.3 ppm) and 13C NMR (~68 ppm vs. ca. 46 ppm) spectra. In the 1H NMR spectra, the β-protons consistently appeared as a triplet, integrating to four protons, due to vicinal coupling (J ~ 4.6 Hz) with the two α-protons (magnetically equivalent due to ring flipping). The occurrence of ring flipping appeared to be consistent with the fact that the 1H NMR spectra of the HCl salts (supporting information) showed separate axial and equatorial shifts for the β-protons. Protonation is known to prevent ring flipping, and this effect was observed with other compounds including arylcyclohexylamines.10 Similarly, the α-protons appeared as a triplet due to vicinal coupling with the β-protons (J ~ 4.6 Hz). Furthermore, the 2,6 and α-proton chemical shifts in 2-MeO-PCMo appeared further downfield compared to those deriving from the 3-MeO and 4-MeO counterparts and a similar effect was observed in the 13C NMR spectra. The proton chemical shifts linked to the 3,5

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC50 ± SEM(nM)</th>
<th>Kd ± SEM(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP</td>
<td>34.7 ± 2.5</td>
<td>22.1 ± 1.6</td>
</tr>
<tr>
<td>Ketamine4</td>
<td>508.5 ± 30.1</td>
<td>323.9 ± 19.2</td>
</tr>
<tr>
<td>2-MeO-PCMo</td>
<td>2477 ± 115</td>
<td>1578 ± 73.2</td>
</tr>
<tr>
<td>3-MeO-PCMo</td>
<td>397.0 ± 45.4</td>
<td>252.9 ± 28.9</td>
</tr>
<tr>
<td>4-MeO-PCMo</td>
<td>3326 ± 343.3</td>
<td>2118 ± 218.7</td>
</tr>
<tr>
<td>3,4-MD-PCMo</td>
<td>668.0 ± 30.5</td>
<td>425.5 ± 19.4</td>
</tr>
<tr>
<td>3-Me-PCMo</td>
<td>316.8 ± 29.1</td>
<td>201.8 ± 18.5</td>
</tr>
<tr>
<td>PCMo</td>
<td>524.6 ± 13.7</td>
<td>334.1 ± 8.8</td>
</tr>
</tbody>
</table>

FIGURE 6 Competitive binding curves for PCP, PCMo and analogues from (+)[3-3H]-MK-801 displacement using rat forebrain homogenate [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Heatmap of compound affinities (Kd) at CNS receptors. Solid green without number indicates IC50 was >10 000 nM in primary assay [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 NMDAR binding affinities for PCMo series using (+)[3-3H]-MK-801 in rat forebrains. Means ± SEM from three separate experiments run in duplicate.
3-MeO-PCMo, a morpholine analogue of 3-MeO-PCP, is available for purchase as a 'research chemical' and suspected to share some psychopharmacological properties with ketamine and perhaps PCP. The present study described the analytical characterization of 3-MeO-PCMo, its two positional isomers and three additional analogues. Differentiation between 2-MeO-, 3-MeO- and 4-MeO-PCMo was detectable by chromatographic and spectroscopic methods. In vitro pharmacological investigations also revealed that the compounds displayed moderate affinity toward the NMDAR with off-target activities at sigma-2 and monoamine transporters for dopamine and serotonin. These findings suggest that at least some of the investigated arylcyclohexylmorpholines, including 3-MeO-PCMo, may be psychoactive in humans and thus have abuse potential which may account for some of the purchases of this 'research chemical'. Clinical and forensic studies would be required to investigate this hypothesis further.

3.1 NMDAR and off-target receptor binding studies

With regards to NMDAR, the results of competitive (+)-[3-H]-MK-801 displacement assays are provided in Table 3 as IC50 and Kd values and shown graphically in Figure 6. Compared to some previously investigated PCP analogues, substitution of piperidine for a morpholine ring reduced NMDAR affinity. Consistent with the present results, PCMo was previously reported to show approximately ten-fold reduced affinity to NMDAR using [3H]-PCP in CNS tissue.18,46 Furthermore, PCMo had ten-fold reduced potency relative to PCP in a number of experimental models.46,67 The affinity rank order determined in this study was comparable to that of their PCP counterparts with 3-MeO > H > 2-MeO > 4-MeO.30 Interestingly, the same affinity order was seen with a series of diphenidine analogues,4 although it was not observed with the methoxylated PCPy series (3-MeO > 4-MeO > 2-MeO).30

A heatmap containing the results of the binding experiments on the 46 assessed CNS receptors is presented in Figure 7. Besides NMDAR, all compounds had moderate affinity for the sigma-2 receptor, which is commonly seen with this class of compounds.3,48 3,4-MD-PCMo was the most selective compound and this selectivity was consistent with other 3,4-MD substituted arylcyclohexylamines.30 Likewise, 3,4-MD-PCMo and PCMo had moderate NMDAR values comparable to ketamine and memantine.4,49,50 PCMo was shown to be less potent and toxic than PCP,24 which may be explained by the moderate NMDAR affinity.30,49,50

Arylcyclohexylamines have displayed variable affinities at the monoamine reuptake transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT, respectively).30,51 Interestingly, the morpholine ring abolished NET activity for all compounds relative to their piperidine counterparts.30 3-Me-PCMo was the only compound with affinity for both SERT and DAT. The 2-MeO and 3-MeO analogues displayed selectivity towards SERT over DAT, whereas 4-Me-PCMo had appreciable affinity for DAT.

Larger 1,4-diaminocyclohexane derivatives containing the PCMo moiety displayed in vitro μ-opioid receptor activity in previous cell-based assays.52 However, the binding experiments in this study revealed no affinity for the δ-, κ- or μ-opioid receptors, which indicate that the anti-nociceptive properties may have been the result of NMDAR antagonism.53-56 Previous pharmacological experiments with PCMo, 2-MeO-PCMo, 4-Me-PCMo and 2-Me-4-HO-PCMo found analgesic activity in rats17 which further suggests analgesic effects being mediated independently from opioid receptor affinity.

4 CONCLUSION

3-MeO-PCMo, a morpholine analogue of 3-MeO-PCP, is available for purchase as a 'research chemical' and suspected to share some psychopharmacological properties with ketamine and perhaps PCP. The present study described the analytical characterization of 3-MeO-PCMo, its two positional isomers and three additional analogues. Differentiation between 2-MeO-, 3-MeO- and 4-MeO-PCMo was detectable by chromatographic and spectroscopic methods. In vitro pharmacological investigations also revealed that the compounds displayed moderate affinity toward the NMDAR with off-target activities at sigma-2 and monoamine transporters for dopamine and serotonin. These findings suggest that at least some of the investigated arylcyclohexylmorpholines, including 3-MeO-PCMo, may be psychoactive in humans and thus have abuse potential which may account for some of the purchases of this 'research chemical'. Clinical and forensic studies would be required to investigate this hypothesis further.

REFERENCES

37. Cheng YC, Pussof WH. Relationship between the inhibition constant (K) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(3):3099–3108.
47. Lipton SA. Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 2004;1(1):101–110.

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Colestock T, Wallach J, Mansi M, et al. Syntheses, analytical and pharmacological characterizations of the 'legal high' 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo) and analogues. Drug Test Anal. 2017;1–12. https://doi.org/10.1002/dta.2213