SYNTHETIC REDUCTIONS IN CLANDESTINE AMPHETAMINE AND METHAMPHETAMINE LABORATORIES: A REVIEW

ANDREW ALLEN and THOMAS S. CANTRELL

aAshtabula County Laboratory, 345 Rogers Place, Ashtabula, OH 44004 and bChemistry Department, American University, Washington, DC 20016 (U.S.A.)

(Received June 8th, 1988)
(Revision received November 29th, 1988)
(Accepted December 5th, 1988)

Summary

A review of synthetic reductions utilized in the clandestine manufacture of amphetamine and methamphetamine is presented. General discussions on the mechanism of heterogeneous catalysis, dissolving metals, hydrides and non-metal reductions used in the manufacture of amphetamine and methamphetamine with over 80 references are presented.

Key words: Amphetamine; Methamphetamine; Synthesis; Clandestine laboratories

Introduction

This review addresses reductions in clandestine methamphetamine and amphetamine synthesis. Central to the diverse routes published for the synthesis of methamphetamine and amphetamine is a reductive step at some point in the synthesis. Of 95 references surveyed concerning the synthesis of these controlled drugs, all but ten utilize a reductive approach. Since such diversity exists in these approaches, we felt that a composite literature review and discussion of the chemistry involved would help forensic chemists charged with investigating these clandestine laboratories. Secondly, we felt that a composite reference list would be of assistance in correlating notes or procedures found in clandestine laboratory sites to the open literature. Finally, only two open literature review articles in this forensic area have appeared and both were devoid of extensive references [1,2].

An overview of synthetic approaches to methamphetamine and amphetamine utilizing reductive routes is outlined in Tables 1 and 2. Table 1 is organized by the type of catalytic surface or reductive species; i.e. Pd, Pt, LiAlH₄, HCOOH, etc. Table 2 is organized by the synthetic route or intermediate; i.e. Leuckart, Schiff base, oxime, nitrostyrene, etc. Figures 1-12 illustrate the chemical formulas of the chemical reduction routes to amphetamine and methamphetamine. References [3,72] are annotated with the type of reductive catalyst/reagent and route utilized. Chemical Abstract citations

0379-0738/89/$03.50
© 1989 Elsevier Scientific Publishers Ireland Ltd.
Printed and Published in Ireland
TABLE 1

METHAMPHETAMINE OR AMPHETAMINE

<table>
<thead>
<tr>
<th>Heterogeneous reductions (external source of hydrogen)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Pd</td>
<td>3-17,39</td>
</tr>
<tr>
<td>B. Pd/C</td>
<td>7,9,12,15-17</td>
</tr>
<tr>
<td>C. Pd/BaSO₄</td>
<td>5,8</td>
</tr>
<tr>
<td>D. Pt</td>
<td>18-24</td>
</tr>
<tr>
<td>E. Pt/C</td>
<td>23</td>
</tr>
<tr>
<td>F. CuO, CaSO₄, BaSO₄</td>
<td>25</td>
</tr>
<tr>
<td>G. Raney Nickel (Ni-Al)</td>
<td>26-38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heterogeneous reductions (internal source of hydrogen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. CaH₂/Pd, HCl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dissolving metal reductions (Internal' electrolytic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Al-Hg</td>
</tr>
<tr>
<td>J. Al-Pd, HCl</td>
</tr>
<tr>
<td>K. Na alcohol</td>
</tr>
<tr>
<td>L. Na-Hg</td>
</tr>
<tr>
<td>M. Fe, HCl</td>
</tr>
<tr>
<td>N. Zn, HCl</td>
</tr>
<tr>
<td>O. Zn-Cu, HCl</td>
</tr>
<tr>
<td>F. Zn-Pd, HCl</td>
</tr>
<tr>
<td>Q. Zn-Cu-Pd, HCl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metal hydride reductions (source of hydride)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. NaBH₄</td>
</tr>
<tr>
<td>S. NaCNBH₃</td>
</tr>
<tr>
<td>T. LiAlH₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-metal reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. HI</td>
</tr>
<tr>
<td>V. HCOOH</td>
</tr>
</tbody>
</table>

¹J. Heagy, personal communication, from information gathered by attending clandestine laboratory sites. Drug Enforcement Administration, 450 Golden Gate Avenue, San Francisco, CA 94102.

[C.A. Vol.: page (year)] are included for each reference for ease of cross reference with cryptic notes often found in clandestine laboratory sites. Finally, the recurrent use of the terminology “open literature” refers to legitimate, accredited journals as opposed to underground publications or notes passed between clandestine manufacturers.

TABLE 2
METHAMPHETAMINE AND AMPHETAMINE VIA REDUCTION

<table>
<thead>
<tr>
<th>Methamphetamine via</th>
<th>Route no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephedrine</td>
<td></td>
</tr>
<tr>
<td>(A) Direct [3,6,17; J. Heagy*]</td>
<td>1</td>
</tr>
<tr>
<td>(B) Halo analog [3—5,17,18,19,39,54]</td>
<td></td>
</tr>
<tr>
<td>(C) Sulfate ester [6]</td>
<td></td>
</tr>
<tr>
<td>(D) Phosphate ester [7]</td>
<td></td>
</tr>
<tr>
<td>(E) Perchlorate ester [8]</td>
<td></td>
</tr>
<tr>
<td>Schiff’s base [10,20,21,22,25,40—44,46,55,57]</td>
<td>2</td>
</tr>
<tr>
<td>Thiazole [47]</td>
<td>9</td>
</tr>
<tr>
<td>Leuckart [58,64,66]</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphetamine</td>
<td>10</td>
</tr>
<tr>
<td>Oxime [11,12,30,31,48,49,60]</td>
<td>3</td>
</tr>
<tr>
<td>Nitrostyrene [13,32,33,35,50,61]</td>
<td>4</td>
</tr>
<tr>
<td>2-Keto oxime [14—16,36,38,51]</td>
<td>5</td>
</tr>
<tr>
<td>Hydrazine [23,34]</td>
<td>6</td>
</tr>
<tr>
<td>Schiff’s base [28—29,45]</td>
<td>2</td>
</tr>
<tr>
<td>3-Iodo analog [62]</td>
<td>11</td>
</tr>
<tr>
<td>Leuckart [65,67—70]</td>
<td>8</td>
</tr>
<tr>
<td>Demercuration [56]</td>
<td>12</td>
</tr>
</tbody>
</table>

*See footnote Table 1.

Heterogeneous catalysis

The role of heterogeneous catalytic hydrogenation and hydrogenolysis in organic synthesis is replete in the literature. However, the mechanism of the catalyst’s role has remained elusive due mainly to the difficulty of studying such heterogenous systems. Recent research in this area has shown that a system charged with H₂ and D₂ in the presence of a catalyst yields HD. This has been interpreted as the catalyst’s coordination with molecular H₂ and weakening or disruption of the H-H bond [87,88]. Studies by Maier et al. (pers. commun., Dept. of Chemistry, Univ. of California, Berkeley, CA 94720), in which the catalytic surface has been coated with SiO₂, have revealed that the H-H (which penetrates the SiO₂ layer to coordinate with the catalytic surface) is truly ruptured, yielding H₂. Furthermore, hydrogenation of an organic species (incapable of penetrating the SiO₂ layer) occurred. This suggests that coordination between the organic moiety and the catalytic surface may not be necessary. “Selectivity” for an organic substrate in some catalytic metal hydrogenation systems has recently been shown to be dependent upon the topology of the catalytic surface [89]. Further work in this area will be followed with interest.
Heterogeneous catalytic reduction of ephedrine to methamphetamine in clandestine laboratories is most often achieved with palladium [3—8, 15,17,39]; the use of platinum (Adams Catalysis) is second in frequency [18,19] (Fig. 1). Similar correlations apply to the reduction of phenylpropanolamine to amphetamine utilizing palladium, platinum and Raney Nickel.
Hydrogenolysis of ephedrine or phenylpropanolamine (here hydrogenolysis is defined as reduction of C-X) is not a result of reduction of the benzylic carbon-OH bond. The actual moiety reduced is C-X, where X refers to halogen [3–5, 17–19, 39,54] sulfate [6], phosphate [7] or perchlorate [8] esters (Fig. 1). This moiety (C-X) may be produced in situ [3,17] or synthesized externally, isolated and then reduced [4,9,18,19,39,54]. The stereochemistry and analytical methodology for methamphetamine prepared from ephedrine and pseudoephedrine has recently been addressed [92,93].
Heterogeneous catalysis has been used to reduce the imine bond of Schiff bases formed with phenyl-2-propanone and ammonia or methylamine in order to produce amphetamine [26-29] or methamphetamine [9,10,20-22,25] (Fig. 2). When heterogeneous catalysis is utilized in this Schiff's base reduction, a competing reaction, that of P-2-P reduction to 1-phenyl-2-propanol, limits the yield of amphetamine or methamphetamine. Additions of large excesses of the amine component in these reactions have been employed to suppress the
10. \[\text{METHAMPHETAMINE} \]

11. \[\text{AMPHETAMINE} \]

12. \[\text{AMPHETAMINE} \]

Figs. 10–12.
ketone reduction. This has limited applicability, since the optimum pH for the Schiff's base production is between pH 6 and 7.

Other clandestine routes, although less popular, which have open literature references utilizing heterogenous catalysis for the synthesis of amphetamine are oxime reduction [12,30,31,35] (Fig. 3), nitrostyrene reduction [13,32,33] (Fig. 4), 2-keto-oxime reduction [16,36,38] (Fig. 5) and hydrazone reduction [23,34] (Fig. 6).

Precursors to amphetamine (phenylpropanolamine) and methamphetamine (ephedrine) have been synthesized with the aid of heterogeneous catalysis [16,38], (Fig. 5).

Dissolving metal reductions

Dissolving metal reductions, in particular aluminum, continue to be the most popular synthetic routes to methamphetamine and amphetamine in clandestine laboratories in the United States. Although molecular H₂ is produced as the metal dissolves, this is generally considered a detriment to the reduction of the organic species. The actual reductive mechanism does not involve molecular H₂ but is, in fact, a result of an "internal electrolytic process". Electron transfer from the metal to a heteroatom results in a radical carbon which abstracts hydrogen from solution to complete reduction. In metals where higher oxidation states are present (i.e. Al, Mg, Zn) dimers may form as a result of intramolecular radical combination [54,90,91].

Poisoning of catalysis is one approach used to minimize rapid dissolution of the metal and to abate evolution of H₂. Amalgams made between sodium and mercury have the effect of diminishing the activity of the parent metal thus slowing dissolution of the reducing species. Amalgamation between aluminum and mercury has the added benefit of preventing oxide formation on the surface of aluminum in contact with air. Aluminium-mercury amalgam serves to poison the metal somewhere between the extremes of the over-active metal and the inactive metal oxide.

In the clandestine manufacture of amphetamine and methamphetamine the most popular route is via aluminum-mercury amalgam reduction of the Schiff base adduct of phenyl-2-propanone (P-2-P) and the appropriate amine [40—45] (Fig. 2). This popularity persists despite U.S. Government control (Schedule II) of P-2-P in 1980. This controlled status has resulted in an upsurge in the clandestine manufacture of P-2-P. A variety of synthetic routes have surfaced in clandestine laboratories, primarily through phenylacetic acid [73—77] (Fig. 7). Alternatives to the phenylacetic acid (now on a reporting schedule in some states) synthesis of P-2-P have appeared [78—89]. One approach to P-2-P utilizes a dissolving metal reduction of nitrostyrene with iron and hydrochloric acid [52,53] (Fig. 4).

Clandestine laboratories which utilize other dissolving metal reduction routes have been infrequently encountered. However, reduction of a Schiff base to methamphetamine [46] (Fig. 2) and of 5-phenyl-4-methylthiazole to
amphetamine [47] (Fig. 9) using sodium in alcohol are cited in the open literature. Additionally, Na/alcohol reduction of an oxime [48,49] (Fig. 3), Na/Hg amalgam reduction of a nitrostyrene [50] (Fig. 4) or a 2-keto-oxime [51] (Fig. 5) to amphetamine and zinc/HCl reduction of chloro analogs of ephedrine to methamphetamine [54] (Fig. 1) are also cited in the literature.

Metal hydride reduction

Metal hydride reductions have not captured the imagination of clandestine laboratory chemists like the remainder of the scientific community. This fact is probably the result of their inability to utilize current Chemical Abstracts nomenclature, wherein most literature references to metal hydrides appear. Metal hydrides function by transfer of a hydride to the electron-deficient center (typically carbon) of a double bond. Protonation is effected on the electron rich center via the solvent media in the case of NaBH₄ or product work-up in case of LiAlH₄.

The infrequent use of metal hydride reducing agents in clandestine laboratories cannot be attributed to the lack of open literature references in these agents [55–62]. Methamphetamine has been produced in clandestine laboratory sites via NaBH₄ reduction of the Schiff Base adduct of P-2-P and methylamine following a procedure outlined by Weichet et al. [55] (Fig. 2). Unfortunately, the activity of NaBH₄ is sufficient to reduce the ketone of P-2-P and this is a competing reaction. This is not the case with the more selective reducing agent NaCNBH₃, whose activity is dependent on the pH of the reaction media [57]. Lithium aluminum hydride, whose activity is greater and therefore less selective than NaBH₄, has been used to produce methamphetamine or amphetamine through the reduction of a variety of functional groups; i.e. formyl [58] (Fig. 8), carbamate [59] (Fig. 10), oxime [60] (Fig. 3), nitrostyrenes [61] (Fig. 4) and halogen analogs [62] (Fig. 11). Sodium borohydride has also been used in a demercuration procedure route followed by acid hydrolysis to amphetamine (in a clandestine laboratory) as outlined in Fig. 12 [56].

Non-metal reductions

Non-metal reduction routes to methamphetamine and amphetamine have been what might be termed as “fads” in clandestine laboratory synthesis within the United States. In the early and mid 1970s, the Leuckart Synthesis, which employs formic acid, was the most popular clandestine route to amphetamine and methamphetamine. For whatever reason, this route, which is still very common in Western Europe, lost popularity in the United States by the end of the 1970s. In the early 1980s, the hydriodic acid reduction of ephedrine to methamphetamine began increasing in frequency in the Southwestern and Western areas of the United States. Although several literature references link the Leuckart synthesis (Fig. 8) to amphetamine [67–69] and methamphetamine [64–66], “no” open literature reference directly links
hydriodic acid reduction of a benzylic alcohol to the production of methamphetamine (Fig. 1). Several general benzylic alcohols have been reduced to their aliphatic counterparts [63]. However, this 'cross application' of chemical syntheses would require a level of chemical knowledge not common among clandestine chemists.

The mechanism of the Leuckart reaction has been studied [65,71,72] and shown to be a free radical process initiated by formic acid. Unfortunately, the mechanism of the hydriodic acid reduction has not been established. It seems clear that the benzylic alcohol of ephedrine undergoes a substitution reaction with iodine. However, the mechanism of the carbon-halogen reduction is in conjecture; i.e. hydride transfer, internal electrolysis via disproportionation of iodine, or elevated temperature decomposition of HI to H₂ and I₂ whereby H₂ reduces the C-I bond [63].

Conclusion

In this review we have addressed reductive approaches to amphetamine and methamphetamine via heterogeneous catalysis, dissolving metals, metal hydrides and non-metal reductions. The chemistry of these varied approaches has been highlighted with emphasis on the role of the reducing species. It may be concluded that there are many options available to clandestine chemists (see Figs. 1—12). However, in actual practice, the three most frequently encountered routes in the United States are (1) the aluminum foil reduction of the Schiff Base adduct of P-2-P and methylamine [40—44], (2) the palladium catalyzed reduction of the chloro analog of ephedrine to methamphetamine [4,5] and (3) the hydriodic acid reduction of ephedrine to methamphetamine [63; pers. comm.*].

References

3. Pd, Figure 1. Ephedrine with HCl (gas) reduced to methamphetamine
4. Pd, Figure 1. Chloro ephedrine reduced to methamphetamine
5. Pd/BaSO₄, Figure 1. Bromo or chloro ephedrine reduced to methamphetamine

*J. Heagy, pers. commun. from information gathered by attending clandestine laboratory sites. Drug Enforcement Administration, 450 Golden Gate Avenue, San Francisco, CA 94102, U.S.A.
6 Pd and Pt, Figure 1.
Ephedrine ester reduced to methamphetamine

7 Pd/C, Figure 1.
Ephedrine phosphate ester reduced to methamphetamine

8 Pd/BaSO₄, Figure 1.
Ephedrine with perchloric acid reduced to methamphetamine

9 Pd/C, Figure 2.
Schiff base reduced to methamphetamine

10 Pd, Figure 2.
Schiff base (P-2-P + MeNH₂) reduced to methamphetamine

11 Pd/HCl
Chloro analog of phenylpropanolamine to amphetamine

12 Pd/C
Nitrile reduction to phenethylamines

13 Pd and Pt with a slurry of Ni, Figure 4.
Nitrostyrene reduction to amphetamine

14 Pd, Figure 3.
Oxime reduction to amphetamine

15 Pd/C, Figure 1.
Pseudoephedrine reduced to methamphetamine

16 Pd/C, Figure 5.
2-keto oxime reduction to phenylpropanolamine

17 Pd/C, Figure 1.
Ephedrine reduction to methamphetamine

18 Pt, Figure 1.
Chloroephedrine reduction to methamphetamine
Chloroephedrine reduction to methamphetamine

Schiff base reduction (P-2-P + NH₃) to amphetamine

Schiff base reduction (P-2-P + MeNH₂) to methamphetamine

Schiff base reduction (P-2-P + MeNH₂) to methamphetamine

Phenylacetone hydrazones reduction to amphetamine

2-keto oxime reduced to ephedrine

CuO, CaSO₄, BaSO₄, Figure 2.

Schiff base reduction (P-2-P + MeNH₂) to methamphetamine

Ni-Al, Figure 2.

Schiff base reduction (P-2-P + NH₃) to amphetamine

Ni-Al, Figure 2.

Schiff base reduction (P-2-P + NH₃) to amphetamine

Ni-Al, Figure 2.

Schiff base reduced (P-2-P + NH₃) to amphetamine

Ni-Al, Figure 2.

Schiff base reduced (P-2-P + NH₃) to amphetamine

Ni-Al, Figure 3.

Oxime reduced to amphetamine

Ni-Al, Figure 3.

Oxime reduced to amphetamine
Nitrostyrene reduced to amphetamine

Nitrostyrene reduced to amphetamine

Hydrazone reduced to amphetamine

Oxime reduction to amphetamine

2-keto oxime reduced to phenylpropanolamine

Chloroephedrine reduced to methamphetamine

2-Keto oxime reduced to phenylpropanolamine

Chloroephedrine reduced to methamphetamine

Schiff base reduced (P-2-P + MeNH₂) to methamphetamine

Schiff base reduced (P-2-P + MeNH₂) to methamphetamine

Schiff base reduced (P-2-P + MeNH₂) to methamphetamine

Schiff base reduced (P-2-P + NH₂) to amphetamine

Hydrazone reduction to amphetamine
Na/AIc, Figure 2.
Schiff base reduced (P-2-P + MeNH₂) to methamphetamine

Na/AIc, Figure 9.
α-Bromobenzyl Methyl ketone + Thioformamide = 5-Phenyl-4-methylthiazole + Na/AIc to methamphetamine

Na/AIc, Figure 3.
Oxime reduced to amphetamine

Na/AIc, Figure 3.
Oxime reduced to amphetamine.

Na-Hg, Figure 4.
Nitrostyrene reduced to amphetamine

Na-Hg, Figure 3.
Oxime reduced to amphetamine

Fe, HCl, Figure 4.
Nitrostyrene reduced to phenyl-2-propanone

Fe, HCl, Figure 4.

Zn, HCl, Figure 1.
Zn-Cu, HCl
Zn-Pd, HCl
Zn-Cu-Pd, HCl
Chloroephedrine reduced to methamphetamine

NaBH₄, Figure 12.
Schiff base reduced (ketone + MeNH₂) to ephedrine

NaBH₄, Figure 2.
(Ketone + Amine) reduced to amines.
R.F. Borch, M.D. Bernstein and H.D. Durst
58 LiAlH₄, Figure 8.
N-formylamphetamine reduced to methamphetamine

59 LiAlH₄, Figure 10.
d-Phenylalanine carbamate reduced to amphetamine

60 LiAlH₄, Figure 3.
Oxime reduced to amphetamine

61 LiAlH₄, Figure 4.
Nitrostyrene reduced to amphetamine

62 LiAlH₄, Figure 11.
1-Phenyl-2-amino-3-iodopropane to amphetamine (2,2-dimethyl-5-amino-6-phenyl-1,3-dioxane + HI + P in HOAc/Ac₂O = 1-phenyl-2-amino-3-iodopropane)

63 HI, Figure 1.
Reduction of a benzylic alcohol (General)

64 HCOOH, Figure 8.
Ketone + HCONHCH₃ = formyl + HCl to amine

65 HCOOH, Figure 8.
Leuckart mechanism study and synthesis of amphetamine

66 HCOOH, Figure 8.
Leuckart to N-formylamphetamine followed by LiAlH₄ reduction to methamphetamine

67 HCOOH, Figure 8.
Leuckart to amphetamine

68 HCOOH, Figure 8.
Leuckart to amphetamine
HCOOH, Figure 8.
Leuckart reaction to amphetamine and methamphetamine

HCOOH, Figure 8.
Leuckart mechanism study

HCOOH, Figure 8.
Leuckart mechanism study

HCOOH, Figure 8.
Leuckart mechanism study

P-2-P via Phenylacetic acid and Ac₂O

P-2-P via phenylacetic acid and lead acetate

P-2-P via phenylacetic acid and ThO₂ or MgO

P-2-P via phenylacetic acid and ThO₂

Phenylacetic acid via benzyl cyanide or Grignard

